Category: LLM
-
Fine-Tuning Techniques: LoRA, QLoRA, and Parameter-Efficient Methods
Introduction Parameter-Efficient Fine-Tuning (PEFT) telah merevolusi cara kita mengadaptasi Large Language Models (LLMs) untuk task-specific applications. Dengan model yang semakin besar (GPT-4, Claude, LLaMA), full fine-tuning menjadi tidak praktis dan mahal. Artikel ini membahas teknik-teknik modern yang memungkinkan fine-tuning dengan resource minimal namun hasil maksimal. Mengapa Parameter-Efficient Fine-Tuning? Masalah Full Fine-Tuning Keuntungan PEFT LoRA (Low-Rank…
-
Training LLMs from Scratch: Data, Compute, and Methodology Introduction Training Large Language Models (LLMs) from scratch adalah salah satu proyek AI paling ambisius dan kompleks saat ini. Artikel ini akan mengupas tuntas seluruh proses mulai dari persiapan data hingga evaluasi model final, memberikan panduan praktis dan insights dari pengalaman training model-model state-of-the-art. Overview: The Scale…
-
Deep Dive into Transformer Attention Mechanisms
Introduction Mekanisme attention adalah jantung dari arsitektur Transformer yang telah merevolusi Natural Language Processing (NLP) dan berbagai bidang AI lainnya. Artikel ini akan mengupas tuntas bagaimana attention bekerja, dari konsep dasar hingga implementasi teknis yang kompleks. Apa itu Attention Mechanism? Attention mechanism adalah teknik yang memungkinkan model untuk “memperhatikan” bagian-bagian tertentu dari input ketika memproses…
-
Building Your First LLM-Powered Application
The rise of Large Language Models (LLMs) has opened up incredible possibilities for developers to create intelligent applications that can understand, generate, and interact with human language in sophisticated ways. Whether you’re looking to build a chatbot, content generator, or document analyzer, this guide will walk you through the essential steps to create your first…
-
Retrieval-Augmented Generation (RAG): Enhancing LLMs with External Knowledge
Retrieval-Augmented Generation represents a paradigm shift in how we approach the limitations of Large Language Models. While LLMs demonstrate remarkable capabilities in language understanding and generation, they face inherent challenges including knowledge cutoffs, hallucinations, and inability to access real-time or domain-specific information. RAG addresses these limitations by combining the generative power of LLMs with dynamic…
-
Working with LLM APIs: Integration and Development Basics
The integration of Large Language Model APIs into applications has become a cornerstone of modern software development. Whether you’re building chatbots, content generation tools, or intelligent automation systems, understanding how to effectively work with LLM APIs is essential for creating robust, scalable, and efficient applications. This comprehensive guide covers the fundamental concepts, best practices, and…
-
Fine-Tuning vs. Prompt Engineering: When to Use Which Approach
In the rapidly evolving landscape of AI applications, two primary strategies dominate the conversation around optimizing Large Language Model performance: fine-tuning and prompt engineering. While both approaches aim to improve model outputs for specific use cases, they operate through fundamentally different mechanisms and are suited to different scenarios. Understanding when to employ each strategy can…
-
Prompt Engineering Best Practices: Writing Effective Instructions
Prompt engineering has emerged as a critical skill in the age of Large Language Models (LLMs). The art and science of crafting effective prompts can dramatically influence the quality, accuracy, and usefulness of AI-generated responses. Whether you’re a developer, content creator, researcher, or casual user, mastering prompt engineering techniques can unlock the full potential of…
-
Advanced Prompting Strategies: Chain-of-Thought and Few-Shot Learning
The art of prompting AI models has evolved far beyond simple question-and-answer interactions. As large language models become more sophisticated, so too must our approaches to communicating with them. Two powerful techniques that have emerged as game-changers in the field are Chain-of-Thought (CoT) prompting and Few-Shot Learning. These strategies can dramatically improve the quality, accuracy,…
-
Popular LLM Models: GPT, Claude, Llama, and Others Compared
The landscape of Large Language Models has exploded in recent years, with numerous powerful models emerging from different organizations, each with unique strengths, capabilities, and design philosophies. From OpenAI’s groundbreaking GPT series to Meta’s open-source Llama models, from Anthropic’s safety-focused Claude to Google’s multimodal Gemini, the diversity of available LLMs can be overwhelming. Understanding the…